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My research concerns the theory of orders and the theory of graphs from the reverse mathematics point
of view. Reverse mathematics is a vast research program which dates back to the Seventies. Its central
question, as formulated in [8], the main monograph in this area, is “Which set existence axioms are needed
to prove the theorems of ordinary, non-set-theoretic mathematics?”. Aiming to answer this question, the
purpose of reverse mathematics is to clarify some traditional problems in foundations of mathematics, such
as the legitimacy of the use of infinite objects, using tools from mathematical logic. In particular, David
Hilbert already noticed that theorems of very different branches of mathematics, such as analysis, algebra
and combinatorics, are provable in the formal theory of second order arithmetic. However, proving that
a certain theorem follows from some axioms is not sufficient to understand which are the minimal axioms
required to prove the theorem; in order to satisfy this minimality requirement it is necessary to prove
the axioms themselves from the theorem over a base theory. There are older applications of this process
in logic, but reverse mathematics offers a specific formal context and a fixed base theory, which allow to
compare theorems of very different areas. Even if the primary focus of reverse mathematics is about the
strength of set-existence axioms needed to prove some theorems, in more recent years more attention has
been paid to the computational content of these same theorems. More specifically, the relationships among
the theorems have also been understood as carrying information about the computational core of some
theorems and about the methodological core to which each subsystems of second order arithmetic can be
associated (see [4]). Reverse mathematics allows also researchers to create a hierarchy of theorems, which
is fruitfully compared with other classifications based more on computability features of the theorems.
The benchmarks of the reverse mathematics hierarchy are the following:

• RCA0: the base theory, where comprehension is limited to ∆0
1-predicates,

• WKL0: the extension of RCA0 obtained adding Weak König’s Lemma, i.e. each infinite binary tree
has an infinite path,

• ACA0: allows to form sets defined by arithmetical formulae,

• ATR0: arithmetical comprehension can be iterated along any well-order,

• Π1
1-CA0: allows to form sets defined by Π1

1-formulae.

Combinatorial problems were analysed since the beginning of reverse mathematics, but there are
still plenty of unexplored areas and open questions. Moreover, important results about the strength of
combinatorial principles opened new questions and problems in this area, sparking a growing interest for
reverse mathematics, computable reducibility and Weihrauch reducibility over the last two decades.

The next sections present the main topics of my research, explaining the results obtained so far and
raising questions for future investigation.

1 Reverse mathematics and interval graphs

The topics in this section are linked by the concept of interval graph. Interval graphs form a natural
class of graphs, which may be used to represent events on a time line or quantities with a range of error.
As their name suggests, interval graphs are graphs whose points can be mapped into intervals of a linear
order in such a way that two vertices have an edge in common if and only if the intervals associated to
them overlap. More formally, a graph (V,E) is an interval graph if there are a linear order (L,<L) and
a representation F ⊆ V ×L which satisfy the following two conditions (where F (x) has to be read as an
abbreviation for the set {l ∈ L | (x, l) ∈ F}) for each x, y ∈ V : (a) F (x) is an interval (i.e. u <L v <L w
and u,w ∈ F (x) implies v ∈ F (x) for all u, v, w ∈ L), (b) xEy if and only if F (x) ∩ F (y) 6= ∅.

This is joint work with Alberto Marcone.
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1.1 Characterisation of interval graphs

Several characterisations of interval graphs were proposed in the literature (see [2] for a more extensive
treatment of interval graphs and other references). Our goal is to understand the relative strength of
these characterisations and to compare them with the strength of similar characterisations of interval
orders, which were already studied in [6]. Other examples of analyses of structural characterisations of
graphs can be found in [5].

In order to give a sample of theorems we proved in this area, we first introduce a couple of definitions.
A 1-1 interval graph is an interval graph such that distinct vertices are associated to distinct intervals.
More formally, an interval graphs (V,E) is a 1-1 interval graph if there are a linear order (L,<L) and
a representation F ⊆ V × L which witness that (V,E) is an interval graph and such that if x 6= y, for
x, y ∈ V , then F (x) 6= F (y). Moreover, an order (V,<) is an interval order if there are a linear order
(L,<L) and a representation F ⊆ V × L which satisfy the following two conditions (where F (x) has to
be read as an abbreviation for the set {l ∈ L | (x, l) ∈ F}) for each x, y ∈ V : (a) F (x) is an interval, (b)
x < y if and only if ∀l ∈ F (x)∀m ∈ F (y)(l <L m).

Theorem 1 (RCA0). WKL0 is equivalent to the following: a countable graph (V,E) is an interval graph
if and only if it is triangulated (i.e. every simple cycle of length four or more has a chord) and has no
asteroidal triple (i.e. no set of three distinct vertices with no edge in common such that each pair is
connected by a path that avoids the neighbourhood of the third vertex).

Theorem 2 (RCA0). WKL0 is equivalent to the following: if a countable graph (V,E) is an interval
graph, then it is a 1-1 interval graph.

Theorem 3 (RCA0). WKL0 is equivalent to the following: let (V,<) be a countable order. (V,<) is a 1-1
interval order if and only if (V,E), where pEq ⇔ p ≮ q ∧ q ≮ p for all p, q ∈ V , is a 1-1 interval graph.

From our results we can conclude that if a graph is an interval graph, namely there are a linear order L
and a representation F ⊆ V ×L, then it is always possible to find a 1-1 representation, but this cannot be
done computably. Hence, in RCA0 the two concepts, interval graph and 1-1 interval graph, are different.
Nonetheless, WKL0 is enough to prove their equivalence. We analysed other statements similar to the
ones mentioned above. Moreover, we analysed the characterisation of a subclass of interval graphs, called
indifference graphs, and their relationship with proper interval orders, which are the subclass of interval
orders corresponding to indifference graphs.

1.2 Unique orderability of interval graphs

When thinking about comparability graphs, one question that arises naturally concerns the conditions
under which a given graph is associated to a unique order up to duality. Notice that interval graphs are
complementary graphs of comparability graphs, whose associated orders are interval orders. Moreover,
the reversal of Theorem 2 exploits this feature of comparability graphs, namely that there are generally
several orders compatible with a given comparability graph.

Some characterisations for unique orderability are known in the literature. However, the one for
connected interval graph is stated only for finite graphs, while we are mainly interested in countable
graphs. We prove that the same characterisations hold also for infinite interval graphs.

Theorem 4. A connected infinite interval graph (V,E) is uniquely orderable if and only if it does not
contain buried subgraphs.

A buried subgraph B is a set of vertices of V with at least two incomparable elements and such that
there is a non empty subset K ⊆ V \ B whose points are adjacent to all b ∈ B and such that each path
between b ∈ B and v ∈ V contains a k ∈ K.

We also prove that the previous theorem is equivalent to ACA0. This explains why it is not possible
to prove Theorem 4 by compactness, as usually happens in this context, exploiting the finite case.

1.3 Reorientations of pseudo-transitive graphs

The problem of characterising interval graphs led us to analyse the strength of the following statement:
each pseudo-transitive oriented graph has a transitive reorientation. An oriented graph (V,→) is pseudo-
transitive if for each vertices a, b, c such that a → b → c, it holds that a → c or c → a. Moreover, R is
a reorientation of → if a, b are →-comparable if and only if they are R-comparable. The statement thus
asserts that if → is pseudo-transitive, then it can be reoriented to obtain a transitive R, i.e. an order on
V .

One proof of the characterisation theorem for comparability graphs exploits this statement as an
essential step towards the conclusion. The idea of the proof is as following: given a non oriented graph

2



(V,E) with some properties it is possible to define a bipartite graph (W,F ) out of (V,E). Thanks to
the properties of (W,F ), it is not so difficult to show that it is pseudo-transitive orientable and hence
transitive orientable. From this information one finally get an order for the original graph (V,E), which
witnesses that (V,E) is a comparability graph.

Alain Ghouila-Houri in [3] proved the statement that each pseudo-transitive finite oriented graph has
a transitive reorientation, which immediately generalises to infinite graphs by a compactness argument.
On the other hand, it was not known if the statement is computably true. We proved the following.

Theorem 5. There exists an on-line algorithm to transitively reorient (possibly infinite) pseudo-transitive
oriented graphs.

The input of an on-line (incremental) algorithm consists of vertices coming one at a time together with
all information about the edges connecting them to previous vertices. When the algorithm sees a new
vertex, it must reorient all the edges connecting it to previous vertices while preserving the reorientations
already set at previous stages.

It follows that the statement is computably true, and so that the compactness argument used to
generalise from the finite to the countable case is not necessary. Moreover, the previous theorem implies
that the the multi-valued function that maps a countable pseudo-transitive oriented graph to the set of
its transitive reorientations is computable

This statement may be compared with the characterisation of comparability graphs studied in [5].
Jeffrey Hirst proved that WKL0 is equivalent to the statement that if a graph is such that each cycle of
odd length has a triangular chord, then it is a comparability graph. The latter statement essentially asks
to find a direction for non-oriented edges of a graph with certain properties. By Hirst’s analysis it is not
computably true. Theorem 5 and Hirst’s theorem calibrate the different strength needed to find an order
out of nothing and out of the clues provided by a pseudo-transitive orientation.

In order to prove Theorem 5, we analysed very carefully the properties that a reorientation of a finite
subset of V must have in order to be extendible to other vertices of V . This machinery help us to find
an algorithm and to prove its correctness.

1.4 Dimension of interval graphs

Lastly, within our research concerning interval graphs, we focused our attention on statements which
provide lower and upper bounds on the dimension of families of posets. The dimension of a poset (P,<P )
is the minimum number of linear extensions of <P whose intersections is equal to <P . Dimension is
an important parameter describing a poset, as are height and width. Statements about dimension have
not been explored yet in reverse mathematics. We analysed some basic statements, which guarantee for
example that in RCA0 each countable poset has an associated dimension. Moreover, we were able to
establish the following.

Theorem 6 (RCA0). WKL0 is equivalent to the following: each countable interval order (P,<P ) with
height n and more than three points has dimension less or equal to n+ 1.

The previous statement provides an upper bound for dimension of interval orders, which still is not
very sharp. For a subclass of interval orders, namely for proper interval orders, the upper bound is much
tighter, since it is known that their dimension is never greater than three. This fact is not computably
true (see [1]) and is provable in WKL0.

Question 7. Is the statement that each countable proper interval order has dimension less or equal to
three equivalent to WKL0?

2 Reverse mathematics of Ramsey-theoretic results by Rival
and Sands

The second line of research focuses on two statements proved in [7]. All the results mentioned in the
next sections are partial outcomes of an ongoing project joint with Alberto Marcone, Paul Shafer and
Giovanni Soldà.

2.1 The Rival-Sands theorem for graphs

In 1980 Ivan Rival and Bill Sands [7] proved that each infinite graph G has an infinite subgraph H such
that each vertex of G is adjacent to none or to one or to infinitely many vertices of H. It is worth
comparing this statement with Ramsey’s theorem for pairs. The later statement guarantees that each
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infinite graph has a complete or a totally disconnected subgraph. Both statements exhibit a substructure
with some nice properties in every infinite graph. Notice that a solution to Ramsey’s theorem determines
completely the adjacency relation inside the subgraph H, while it lacks information about the adjacency
structure of H with respect to the other vertices of G. On the other hand, a solution to the Rival-Sands
theorem, while weakening the complete information about H itself, gives some information about the
relationship between the interior of H and its exterior, i.e. the rest of G. Indeed, the authors themselves
presented the Rival-Sands statement as a variation of Ramsey’s theorem which copes with this asymmetry
between the information on the inside structure of the solutions and on the outside of them.

In reverse mathematics Ramsey’s theorem is the prototype of the so called ‘Ramsey’s type’ principles.
A feature of Ramsey’s type principles is the fact that each infinite subset of a solution is still a solution.
Despite the superficial similarity with Ramsey’s theorem, the Rival-Sands theorem is a Ramsey’s type
principle for some graphs, but not for all of them. For example if the graph is locally finite, each infinite
subgraph of a solution is still a solution.

We investigated this statement (restricted to countable graphs) from the viewpoint of reverse mathe-
matics, establishing the following.

Theorem 8 (RCA0). The following is equivalent to ACA0: each graph G has an infinite subgraph H such
that each vertex of G is adjacent to none or to one or to infinitely many vertices of H.

Theorem 9 (RCA0). If a locally finite graph G is such that there is a computable bound to the degree of
the vertices of G, then there is an infinite subgraph H such that each vertex of G is adjacent to none or
to one or to infinitely many vertices of H.

Rival-Sands theorem for graphs revealed to be stronger than Ramsey’s theorem for pairs. By the
previous theorem, the coding power of the former theorem is at least 0′, but we suspect that it is higher.
This gives rise to the following question.

Question 10. What is the coding power of the Rival-Sands theorem for graphs?

2.2 The Rival-Sands theorem for orders

Rival and Sands wondered if it is possible to be more precise about the properties of the subgraph given as
a solution to their theorem. They noticed that there is a graph whose complete and totally disconnected
subgraphs are not solutions to the Rival-Sands statement (notice that this observation already implies
that Ramsey’s theorem for pairs cannot prove the Rival-Sands theorem). Nonetheless, if one restricts to
a specific class of graphs, then a more precise answer can be given. This idea pushed Rival and Sands
to formulate a variant of the first theorem. In this case an instance of the problem is a poset with
finite width (i.e. such that there is a finite bound on the size of each antichain in P ), so a particular
comparability graph. A solution is an infinite chain C, so a complete subgraph, such that each vertex of
P is comparable to none or to infinitely many vertices of C. We are interested in analysing the strength
of this statement, RSpo, restricted to countable posets, from the point of view of reverse mathematics.
Our starting point was the analysis of the proof in Rival-Sands article, which goes through in Π1

1-CA0.

Theorem 11. Π1
1-CA0 proves RSpo.

A careful reading of the proof reveals the passage where Π1
1-CA0 is used. In the proof Rival and

Sands made essential use of chains which are maximal among the chains without maximum. If a poset
of arbitrary cardinality contains a chain without maximum, then Zorn’s lemma assures that there is a
chain which is maximal among them. For countable posets we were able to prove the following.

Theorem 12 (RCA0). The following is equivalent to Π1
1-CA0: let (P,<P ) be a poset and C ⊆ P a chain

without maximum. Then there is a maximal chain D ⊇ C without maximum.

Thus the original proof of RSpo makes essential use of Π1
1-CA0. The great strength of the principle

above is due to the fact that in order to choose which points belongs to D we have to distinguish points
with an ω chain above them from points without this property. Here is where Π1

1-CA0 comes into play.
Since RSpo is formalisable by a Π1

2-statement it cannot imply Π1
1-CA0, because of established model-

theoretic facts. Henry Towsner in [9] showed that some proofs of Π1
2-statements in Π1

1-CA0 actually use a
weaker form of maximality, namely one generally only needs that certain objects are maximal with respect
to a certain other class of objects, rather than absolutely’ maximal. Thus he formulated a hierarchy of
principles, called Σα-LPP0, which lie in between Π1

1-CA0 and ATR0.

Question 13. Is the proof of RSpo in Π1
1-CA0 actually a proof in Σα-LPP0 for some α?
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An answer to the previous question would give a deeper comprehension of the original proof.
Exploiting some relationships between an ascending chain A, whose tails are not solutions, and a

chain which witnesses that each tail of A is not a solution, we were able to give a new proof of RSpo,
which goes through in ACA0. Moreover, despite the great strength required by the original proof, we
were able to give an entirely different proof of RSpo in ADS getting a sharp result.

Theorem 14. For each k ≥ 3, ADS is equivalent to RSpo for posets of width k.

ADS is the principle stating that each linear order contains an infinite ascending chain or an infinite
descending chain. The structure of this proof is different from the proof in ACA0, but again it takes
inspiration from some combinatorial facts about counterexamples to certain chains being solutions to
RSpo. We think that this result is interesting because, as far as we know, RSpo restricted to partial orders
of width three is the first theorem of ordinary mathematics proved to be equivalent to ADS. In reverse
mathematics ADS received attention as an easy consequence of Ramsey’s theorem, which is nonetheless
strictly weaker than Ramsey’s theorem for pairs, but neither computably true nor provable from WKL0.
ADS shares this behaviour with many other statements, which are quite close, yet non equivalent, to each
other. This behaviour contrasts with that of the so called Big Five of reverse mathematics, which are
characterised by a sort of robustness and by the equivalence to numerous theorems from different areas
of mathematics.

The strength of RSpo for posets of width two is instead strictly weaker than ADS.

Theorem 15. Over WKL0, SADS is equivalent to RSpo for posets of width 2.

SADS is a weakening of ADS. Since SADS + WKL0 and ADS are incomparable, it follows that RSpo
for posets of width two is strictly weaker than RSpo for posets of width three. The following question
arises naturally.

Question 16. Is RSpo restricted to posets of width 2 equivalent to SADS over RCA0?

Since we are interested in establishing the strength of RSpo, we paid attention to countable posets.
Nonetheless, our proofs do not exploit the fact that the poset is countable, hence they also represent
proofs of RSpo for posets of arbitrary cardinality, which are entirely different from the original one and
with another combinatorial flavour. Moreover, the proof in ADS has the advantage of not employing the
axiom of choice, used in the original proof to argue that a maximal chain without maximum exists. On
the other hand, the proof in the Rival-Sands article allows to conclude something more about the solution
C. In fact, it is actually proven that for each countable poset P of finite width, there is an infinite chain
C such that each vertex of P is comparable to none or to co-finitely (not only infinitely) many vertices
of C. We call this stronger version of the Rival-Sands theorem sRSpo. Differently from RSpo we get the
following result.

Theorem 17. Over RCA0, sRSpo for posets of width 2 is equivalent to ADS.

The solutions to RSpo found in the proofs in ACA0 and in ADS are not always strong solutions. At
the moment Π1

1-CA0 remains the best upper bound for sRSpo for posets of width greater than two.

Question 18. What is the strength of sRSpo for poset of width k ≥ 3?

2.3 Variants of CAC

By analysing RSpo, we became interested in the restriction of CAC (i.e. the statement that every poset
contains an infinite chain or an infinite antichain) to posets of finite width. In fact, RSpo trivially implies
that each poset of finite width has an infinite chain. We named this principle, namely that each infinite
poset of finite width has an infinite chain, CC. The initial motivation to study CC was the fact that a
lower bound for CC guarantees a lower bound to RSpo as well.

By analogy with CC, we had a look at the principle saying that each poset of finite height has an
infinite antichain (we named it CA). We were able to establish the equivalence with BΣ0

2 for both CC
and CA.

Theorem 19. Over RCA0, CC and CA are equivalent to BΣ0
2.
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